The Cambridge Handbook of Physics Formulas

GRAHAM WOAN
Department of Physics \& Astronomy
University of Glasgow

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge CB2 2RU, UK http://www.cup.cam.ac.uk 40 West 20th Street, New York, NY 10011-4211, USA http://www.cup.org
10 Stamford Road, Oakleigh, Melbourne 3166, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
(c) Cambridge University Press 2000

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2000

Printed in the United States of America

Typeface Times Roman $10 / 12 \mathrm{pt}$. System $\mathrm{IAT}_{\mathrm{E}} \mathrm{X} 2{ }_{\varepsilon}[\mathrm{TB}]$

A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication Data
Woan, Graham, 1963-
The Cambridge handbook of physics formulas / Graham Woan.
p. cm.

ISBN 0-521-57349-1. - ISBN 0-521-57507-9 (pbk.)

1. Physics - Formulas. I. Title.

QC61.W67 1999
$530^{\prime} .02^{\prime} 12-\mathrm{dc} 21$
99-15228
CIP
ISBN 0521573491 hardback
ISBN 0521575079 paperback

Contents

Preface page vii
How to use this book 1
1 Units, constants, and conversions 31.1 Introduction, 3•1.2 SI units, $4 \cdot 1.3$ Physical constants, 6

- 1.4 Converting between units, $10 \cdot \mathbf{1 . 5}$ Dimensions, 16
- 1.6 Miscellaneous, 18
2 Mathematics 19
2.1 Notation, $19 \cdot 2.2$ Vectors and matrices, $20 \cdot 2.3$ Series, summations,and progressions, $27 \cdot \mathbf{2 . 4}$ Complex variables, $30 \cdot \mathbf{2 . 5}$ Trigonometric andhyperbolic formulas, $32 \cdot \mathbf{2 . 6}$ Mensuration, $35 \cdot \mathbf{2 . 7}$ Differentiation, 40- 2.8 Integration, 44•2.9 Special functions and polynomials, 46- 2.10 Roots of quadratic and cubic equations, $50 \cdot 2.11$ Fourier seriesand transforms, $52 \cdot \mathbf{2 . 1 2}$ Laplace transforms, $55 \cdot 2.13$ Probability andstatistics, $57 \cdot 2.14$ Numerical methods, 60
3 Dynamics and mechanics 633.1 Introduction, $63 \cdot 3.2$ Frames of reference, $64 \cdot 3.3$ Gravitation, 66- 3.4 Particle motion, $68 \cdot 3.5$ Rigid body dynamics, $74 \cdot 3.6$ Oscillatingsystems, $78 \cdot 3.7$ Generalised dynamics, $79 \cdot 3.8$ Elasticity, $80 \cdot 3.9$ Fluiddynamics, 84
4 Quantum physics 89
4.1 Introduction, $89 \cdot 4.2$ Quantum definitions, $90 \cdot 4.3$ Wave
mechanics, $92 \cdot 4.4$ Hydrogenic atoms, $95 \cdot 4.5$ Angular momentum, 98
- 4.6 Perturbation theory, 102 • 4.7 High energy and nuclear physics, 103
5 Thermodynamics 1055.1 Introduction, $105 \cdot 5.2$ Classical thermodynamics, $106 \cdot 5.3$ Gaslaws, $110 \cdot 5.4$ Kinetic theory, $112 \cdot 5.5$ Statistical thermodynamics, 114
- 5.6 Fluctuations and noise, $116 \cdot 5.7$ Radiation processes, 118
6 Solid state physics 1236.1 Introduction, $123 \cdot 6.2$ Periodic table, $124 \cdot 6.3$ Crystallinestructure, $126 \cdot 6.4$ Lattice dynamics, $129 \cdot 6.5$ Electrons in solids, 132
7 Electromagnetism 135
7.1 Introduction, 135•7.2 Static fields, 136•7.3 Electromagnetic fields(general), $139 \cdot 7.4$ Fields associated with media, $142 \cdot 7.5$ Force, torque,and energy, $145 \cdot 7.6$ LCR circuits, $147 \cdot 7.7$ Transmission lines andwaveguides, $150 \cdot 7.8$ Waves in and out media, $152 \cdot 7.9$ Plasmaphysics, 156
8 Optics 1618.1 Introduction, $161 \cdot 8.2$ Interference, $162 \cdot 8.3$ Fraunhofer diffraction,164•8.4 Fresnel diffraction, $166 \cdot 8.5$ Geometrical optics, 168-8.6 Polarisation, $170 \cdot 8.7$ Coherence (scalar theory), $172 \cdot 8.8$ Lineradiation, 173
9 Astrophysics 1759.1 Introduction, $175 \cdot 9.2$ Solar system data, $176 \cdot 9.3$ Coordinatetransformations (astronomical), 177•9.4 Observational astrophysics, 179- 9.5 Stellar evolution, 181 • 9.6 Cosmology, 184
Index 187

Chapter 3 Dynamics and mechanics

3.1 Introduction

Unusually in physics, there is no pithy phrase that sums up the study of dynamics (the way in which forces produce motion), kinematics (the motion of matter), mechanics (the study of the forces and the motion they produce), and statics (the way forces combine to produce equilibrium). We will take the phrase dynamics and mechanics to encompass all the above, although it clearly does not!

To some extent this is because the equations governing the motion of matter include some of our oldest insights into the physical world and are consequentially steeped in tradition. One of the more delightful, or for some annoying, facets of this is the occasional use of arcane vocabulary in the description of motion. The epitome must be what Goldstein ${ }^{1}$ calls "the jabberwockian sounding statement" the polhode rolls without slipping on the herpolhode lying in the invariable plane, describing "Poinsot's construction" - a method of visualising the free motion of a spinning rigid body. Despite this, dynamics and mechanics, including fluid mechanics, is arguably the most practically applicable of all the branches of physics.

Moreover, and in common with electromagnetism, the study of dynamics and mechanics has spawned a good deal of mathematical apparatus that has found uses in other fields. Most notably, the ideas behind the generalised dynamics of Lagrange and Hamilton lie behind much of quantum mechanics.

[^0]
3.2 Frames of reference

Galilean transformations

Time and position ${ }^{a}$	$\begin{aligned} & \boldsymbol{r}=\boldsymbol{r}^{\prime}+\boldsymbol{v} t \\ & t=t^{\prime} \end{aligned}$	$\begin{aligned} & (3.1) \\ & (3.2) \end{aligned}$	r, r^{\prime} t, t^{\prime}	position in frames S and S^{\prime} velocity of S^{\prime} in S time in S and S^{\prime}	
Velocity	$\boldsymbol{u}=\boldsymbol{u}^{\prime}+\boldsymbol{v}$	(3.3)	u, u^{\prime}	velocity in frames S and S^{\prime}	
Momentum	$\boldsymbol{p}=\boldsymbol{p}^{\prime}+m \boldsymbol{v}$	(3.4)	$\boldsymbol{p}, \boldsymbol{p}^{\prime}$ m	particle momentum in frames S and S^{\prime} particle mass	
Angular momentum	$\boldsymbol{J}=\boldsymbol{J}^{\prime}+m \boldsymbol{r}^{\prime} \times \boldsymbol{v}+\boldsymbol{v} \times \boldsymbol{p}^{\prime} t$	(3.5)	J, J^{\prime}	angular momentum in frames S and S^{\prime}	
Kinetic energy	$T=T^{\prime}+m \boldsymbol{u}^{\prime} \cdot \boldsymbol{v}+\frac{1}{2} m v^{2}$	(3.6)	T, T^{\prime}	kinetic energy in frames S and S^{\prime}	

Lorentz (spacetime) transformations ${ }^{a}$

Lorentz factor $\quad \gamma=\left(1-\frac{v^{2}}{c^{2}}\right)^{-1 / 2}$	γ v	Lorentz factor velocity of S^{\prime} in S speed of light	
Time and position $\begin{array}{ll} x=\gamma\left(x^{\prime}+v t^{\prime}\right) ; & \\ y=y^{\prime}=\gamma(x-v t) \\ y=y^{\prime} ; & \\ z=z^{\prime} ; & \\ z=y \\ t=\gamma\left(t^{\prime}+\frac{v}{c^{2}} x^{\prime}\right) ; & \\ t^{\prime}=\gamma\left(t-\frac{v}{c^{2}} x\right) \end{array}$	x, x^{\prime} t, t^{\prime}	x-position in frames S and S^{\prime} (similarly for y and z) time in frames S and S^{\prime}	$\frac{S_{x}^{S} x^{\prime}}{S^{\prime}}$
$\begin{gather*} \text { Differential } \tag{3.12}\\ \text { four-vector } \end{gather*} \quad \mathrm{d} \boldsymbol{X}=(c \mathrm{~d} t,-\mathrm{d} x,-\mathrm{d} y,-\mathrm{d} z)$	X	spacetime four-vector	

${ }^{a}$ For frames S and S^{\prime} coincident at $t=0$ in relative motion along x. See page 141 for the transformations of electromagnetic quantities.
${ }^{b}$ Covariant components, using the $(1,-1,-1,-1)$ signature.

Velocity transformations ${ }^{a}$

[^1]
Momentum and energy transformations ${ }^{a}$

${ }^{a}$ For frames S and S^{\prime} coincident at $t=0$ in relative motion along x.
${ }^{b}$ Covariant components, using the $(1,-1,-1,-1)$ signature.

Propagation of light ${ }^{a}$

Doppler effect	$\frac{v^{\prime}}{v}=\gamma\left(1+\frac{v}{c} \cos \alpha\right)$	(3.22)	v frequency received in S v^{\prime} frequency emitted in S^{\prime} α arrival angle in S	
Aberration ${ }^{b}$	$\begin{aligned} & \cos \theta=\frac{\cos \theta^{\prime}+v / c}{1+(v / c) \cos \theta^{\prime}} \\ & \cos \theta^{\prime}=\frac{\cos \theta-v / c}{1-(v / c) \cos \theta} \end{aligned}$	(3.23) (3.24)	$\gamma \quad$ Lorentz factor $=\left[1-(v / c)^{2}\right]^{-1 / 2}$ v velocity of S^{\prime} in S c speed of light θ, θ^{\prime} emission angle of light in S and S^{\prime}	
Relativistic beaming ${ }^{c}$	$P(\theta)=\frac{\sin \theta}{2 \gamma^{2}[1-(v / c) \cos \theta]^{2}}$	(3.25)	$P(\theta)$ angular distribution of photons in S	

${ }^{a}$ For frames S and S^{\prime} coincident at $t=0$ in relative motion along x.
${ }^{b}$ Light travelling in the opposite sense has a propagation angle of $\pi+\theta$ radians.
${ }^{c}$ Angular distribution of photons from a source, isotropic and stationary in $S^{\prime} . \int_{0}^{\pi} P(\theta) \mathrm{d} \theta=1$.

Four-vectors ${ }^{a}$

${ }^{a}$ For frames S and S^{\prime}, coincident at $t=0$ in relative motion along the (1) direction. Note that the $(1,-1,-1,-1)$ signature used here is common in special relativity, whereas $(-1,1,1,1)$ is often used in connection with general relativity (page 67).

Rotating frames

Vector transformation	$\left[\frac{\mathrm{d} \boldsymbol{A}}{\mathrm{d} t}\right]_{S}=\left[\frac{\mathrm{d} \boldsymbol{A}}{\mathrm{d} t}\right]_{S^{\prime}}+\omega \times \boldsymbol{A}$	(3.31)	A any vector S stationary frame S^{\prime} rotating frame $\boldsymbol{\omega}$ angular velocity of S^{\prime} in S $\boldsymbol{v}_{\boldsymbol{v}}, \boldsymbol{v}^{\prime}$ accelerations in S and S^{\prime} \boldsymbol{v}^{\prime} velocity in S^{\prime} \boldsymbol{r}^{\prime} position in S^{\prime} $\boldsymbol{F}_{\text {cor }}^{\prime}$ coriolis force m particle mass $\boldsymbol{F}_{\text {cen }}^{\prime}$ centrifugal force $\boldsymbol{r}_{\perp}^{\prime}$ perpendicular to particle from rotation axis F_{i} nongravitational force λ latitude z local vertical axis y northerly axis x easterly axis Ω_{f} pendulum's rate of turn ω_{e} Earth's spin rate	
Acceleration	$\dot{\boldsymbol{v}}=\dot{\boldsymbol{v}}^{\prime}+2 \omega \times \boldsymbol{v}^{\prime}+\omega \times\left(\omega \times \boldsymbol{r}^{\prime}\right)$	(3.32)		
Coriolis force	${ }_{\text {cor }}^{\prime}=-2 m \omega \times \boldsymbol{v}^{\prime}$	(3.33)		${ }^{\omega} \quad \boldsymbol{F}^{\prime}$
Centrifugal force	$\begin{aligned} \boldsymbol{F}_{\mathrm{cen}}^{\prime} & =-m \omega \times\left(\boldsymbol{\omega} \times \boldsymbol{r}^{\prime}\right) \\ & =+m \omega^{2} \boldsymbol{r}_{\perp}^{\prime} \end{aligned}$	$\begin{aligned} & (3.34) \\ & (3.35) \end{aligned}$		
Motion relative to Earth	$\begin{aligned} & m \ddot{x}=F_{x}+2 m \omega_{\mathrm{e}}(\dot{y} \sin \lambda-\dot{z} \cos \lambda) \\ & m \ddot{y}=F_{y}-2 m \omega_{\mathrm{e}} \dot{x} \sin \lambda \\ & m \ddot{z}=F_{z}-m g+2 m \omega_{\mathrm{e}} \dot{x} \cos \lambda \end{aligned}$	$\begin{aligned} & (3.36) \\ & (3.37) \\ & (3.38) \end{aligned}$		
Foucault's pendulum ${ }^{a}$	$\Omega_{\mathrm{f}}=-\omega_{\mathrm{e}} \sin \lambda$	(3.39)		

${ }^{a}$ The sign is such as to make the rotation clockwise in the northern hemisphere.

3.3 Gravitation

Newtonian gravitation

Newton's law of gravitation	$\boldsymbol{F}_{1}=\frac{G m_{1} m_{2}}{r_{12}^{2}} \hat{\boldsymbol{r}}_{12}$	(3.40)	$m_{1,2}$ masses \boldsymbol{F}_{1} force on $m_{1}\left(=-\boldsymbol{F}_{2}\right)$ \boldsymbol{r}_{12} vector from m_{1} to m_{2}
Newtonian field equations ${ }^{a}$	$\begin{aligned} & \boldsymbol{g}=-\nabla \phi \\ & \nabla^{2} \phi=-\nabla \cdot \boldsymbol{g}=4 \pi G \rho \end{aligned}$	$\begin{aligned} & (3.41) \\ & (3.42) \end{aligned}$	$\begin{array}{ll} G & \text { constant of gravitation } \\ \boldsymbol{g} & \text { gravitational field strength } \\ \phi & \text { gravitational potential } \\ \rho & \text { mass density } \end{array}$
Fields from an isolated uniform sphere, mass M, r from the centre	$\begin{aligned} & \boldsymbol{g}(\boldsymbol{r})= \begin{cases}-\frac{G M}{r^{2}} \hat{\boldsymbol{r}} & (r>a) \\ -\frac{G M r}{a^{3}} \hat{\boldsymbol{r}} & (r<a)\end{cases} \\ & \phi(\boldsymbol{r})= \begin{cases}-\frac{G M}{r} & (r>a) \\ \frac{G M}{2 a^{3}}\left(r^{2}-3 a^{2}\right) & (r<a)\end{cases} \end{aligned}$	(3.43) (3.44)	\boldsymbol{r} vector from sphere centre M mass of sphere $a \quad$ radius of sphere

[^2]General relativity ${ }^{a}$

Line element	$\mathrm{d} s^{2}=g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=-\mathrm{d} \tau^{2}$	(3.45)	$\overline{\mathrm{d} s}$ $\mathrm{d} \tau$	invariant interval proper time interval metric tensor
Christoffel symbols and covariant differentiation	$\begin{aligned} & \Gamma_{\beta \gamma}^{\alpha}=\frac{1}{2} g^{\alpha \delta}\left(g_{\delta \beta, \gamma}+g_{\delta \gamma, \beta}-g_{\beta \gamma, \delta}\right) \\ & \phi_{; \gamma}=\phi_{, \gamma} \equiv \partial \phi / \partial x^{\gamma} \\ & A_{; \gamma}^{\alpha}=A_{; \gamma}^{\alpha}+\Gamma^{\alpha}{ }_{\beta \gamma} A^{\beta} \\ & B_{\alpha ; \gamma}=B_{\alpha, \gamma}-\Gamma_{\alpha \gamma}^{\beta} B_{\beta} \end{aligned}$	$\begin{aligned} & (3.46) \\ & (3.47) \\ & (3.48) \\ & (3.49) \end{aligned}$	$\begin{aligned} & \mathrm{d} x^{\mu} \\ & \Gamma^{\alpha}{ }_{\beta \gamma} \\ & , \alpha \\ & ; \alpha \\ & \phi \\ & A^{\alpha} \\ & B_{\alpha} \end{aligned}$	differential of x^{μ} Christoffel symbols partial diff. w.r.t. x^{α} covariant diff. w.r.t. x^{α} scalar contravariant vector covariant vector
Riemann tensor	$\begin{gathered} R_{\beta \gamma \delta}^{\alpha}=\Gamma^{\alpha}{ }_{\mu \gamma} \Gamma_{\beta \delta}^{\mu}-\Gamma^{\alpha}{ }_{\mu \delta} \Gamma^{\mu}{ }_{\beta \gamma} \\ \quad+\Gamma^{\alpha}{ }_{\beta \delta, \gamma}-\Gamma^{\alpha}{ }_{\beta \gamma, \delta} \\ B_{\mu ; \alpha ; \beta}-B_{\mu ; \beta ; \alpha}=R^{\gamma}{ }_{\mu \alpha \beta} B_{\gamma} \\ R_{\alpha \beta \gamma \delta}=-R_{\alpha \beta \delta \gamma} ; \quad R_{\beta \alpha \gamma \delta}=-R_{\alpha \beta \gamma \delta} \\ R_{\alpha \beta \gamma \delta}+R_{\alpha \delta \beta \gamma}+R_{\alpha \gamma \delta \beta}=0 \end{gathered}$	$\begin{aligned} & (3.50) \\ & (3.51) \\ & (3.52) \\ & (3.53) \end{aligned}$	$R^{\alpha}{ }_{\beta \gamma \delta}$	Riemann tensor
Geodesic equation	$\frac{\mathrm{D} v^{\mu}}{\mathrm{D} \lambda}=0$ where $\frac{\mathrm{D} A^{\mu}}{\mathrm{D} \lambda} \equiv \frac{\mathrm{d} A^{\mu}}{\mathrm{d} \lambda}+\Gamma^{\mu}{ }_{\alpha \beta} A^{\alpha} v^{\beta}$	$\begin{aligned} & (3.54) \\ & (3.55) \end{aligned}$	v^{μ} λ	tangent vector $\left(=\mathrm{d} x^{\mu} / \mathrm{d} \lambda\right)$ affine parameter (e.g., τ for material particles)
Geodesic deviation	$\frac{\mathrm{D}^{2} \xi^{\mu}}{\mathrm{D} \lambda^{2}}=-R_{\alpha \beta \gamma}^{\mu} v^{\alpha} \xi^{\beta} v^{\gamma}$	(3.56)	ξ^{μ}	geodesic deviation
Ricci tensor	$R_{\alpha \beta} \equiv R_{\alpha \sigma \beta}^{\sigma}=g^{\sigma \delta} R_{\delta \alpha \sigma \beta}=R_{\beta \alpha}$	(3.57)	$R_{\alpha \beta}$	Ricci tensor
Einstein tensor	$G^{\mu v}=R^{\mu v}-\frac{1}{2} g^{\mu v} R$	(3.58)		Einstein tensor Ricci scalar $\left(=g^{\mu \nu} R_{\mu \nu}\right)$
Einstein's field equations	$G^{\mu v}=8 \pi T^{\mu v}$	(3.59)	$\begin{aligned} & T^{\mu v} \\ & p \end{aligned}$	ress-energy tensor ressure (in rest frame)
Perfect fluid	$T^{\mu \nu}=(p+\rho) u^{\mu} u^{v}+p g^{\mu \nu}$	(3.60)	$\begin{aligned} & \rho \\ & u^{v} \end{aligned}$	density (in rest frame) fluid four-velocity
Schwarzschild solution (exterior)	$\begin{aligned} \mathrm{d} s^{2}= & -\left(1-\frac{2 M}{r}\right) \mathrm{d} t^{2}+\left(1-\frac{2 M}{r}\right. \\ & +r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right) \end{aligned}$	$\begin{gathered} -1 \\ \mathrm{~d} r^{2} \\ (3.61) \end{gathered}$	M (r, θ, ϕ)	spherically symmetric mass (see Section 9.5) spherical polar coords. time
Kerr solution (outside a spinning black hole)$\begin{align*} & \mathrm{d} s^{2}=-\frac{\Delta-a^{2} \sin ^{2} \theta}{\varrho^{2}} \mathrm{~d} t^{2}-2 a \frac{2 M r \sin ^{2} \theta}{\varrho^{2}} \mathrm{~d} t \mathrm{~d} \phi \\ & +\frac{\left(r^{2}+a^{2}\right)^{2}-a^{2} \Delta \sin ^{2} \theta}{\varrho^{2}} \sin ^{2} \theta \mathrm{~d} \phi^{2}+\frac{\varrho^{2}}{\Delta} \mathrm{~d} r^{2}+\varrho^{2} \mathrm{~d} \theta^{2} \tag{3.62} \end{align*}$			J a Δ ϱ^{2}	angular momentum (along z) $\begin{aligned} & \equiv J / M \\ & \equiv r^{2}-2 M r+a^{2} \\ & \equiv r^{2}+a^{2} \cos ^{2} \theta \end{aligned}$

${ }^{a}$ General relativity conventionally uses "geometrized units" in which $G=1$ and $c=1$. Thus, $1 \mathrm{~kg}=7.425 \times 10^{-28} \mathrm{~m}$ etc. Contravariant indices are written as superscripts and covariant indices as subscripts. Note also that ds^{2} means $(\mathrm{d} s)^{2}$ etc.

3.4 Particle motion

Dynamics definitions ${ }^{a}$

Newtonian force	$\boldsymbol{F}=m \ddot{\boldsymbol{r}}=\dot{\boldsymbol{p}}$	(3.63)		force mass of particle particle position vector
Momentum	$\boldsymbol{p}=\boldsymbol{m} \boldsymbol{r}$	(3.64)	p	momentum
Kinetic energy	$T=\frac{1}{2} m v^{2}$	(3.65)	T	kinetic energy particle velocity
Angular momentum	$J=r \times p$	(3.66)	J	angular momentum
Couple (or torque)	$G=r \times F$	(3.67)	G	couple
Centre of mass (ensemble of N particles)	$\boldsymbol{R}_{0}=\frac{\sum_{i=1}^{N} m_{i} \boldsymbol{r}_{i}}{\sum_{i=1}^{N} m_{i}}$	(3.68)		position vector of centre of mass mass of i th particle position vector of i th particle

${ }^{a}$ In the Newtonian limit, $v \ll c$, assuming m is constant.

Relativistic dynamics ${ }^{a}$

${ }^{a}$ It is now common to regard mass as a Lorentz invariant property and to drop the term "rest mass." The symbol m_{0} is used here to avoid confusion with the idea of "relativistic mass" $\left(=\gamma m_{0}\right)$ used by some authors.

Constant acceleration

$$
\begin{align*}
& v=u+a t \tag{3.76}\\
& v^{2}=u^{2}+2 a s \tag{3.77}\\
& s=u t+\frac{1}{2} a t^{2} \tag{3.78}\\
& s=\frac{u+v}{2} t \tag{3.79}
\end{align*}
$$

Reduced mass (of two interacting bodies)

Reduced mass		(3.80)	μ m_{i}	reduced mass interacting masses
Distances from centre of mass	$\begin{aligned} & \boldsymbol{r}_{1}=\frac{m_{2}}{m_{1}+m_{2}} \boldsymbol{r} \\ & \boldsymbol{r}_{2}=\frac{-m_{1}}{m_{1}+m_{2}} \boldsymbol{r} \end{aligned}$	$\begin{aligned} & (3.81) \\ & (3.82) \end{aligned}$		position vectors from centre of mass $\boldsymbol{r}=\boldsymbol{r}_{1}-\boldsymbol{r}_{2}$ distance between masses
Moment of inertia	$I=\mu\|\boldsymbol{r}\|^{2}$	(3.83)	I	moment of inertia
Total angular momentum	$\boldsymbol{J}=\mu \boldsymbol{r} \times \dot{\boldsymbol{r}}$	(3.84)	J	angular momentum
Lagrangian	$L=\frac{1}{2} \mu\|\dot{\boldsymbol{r}}\|^{2}-U(\|\boldsymbol{r}\|)$	(3.85)	L U	Lagrangian potential energy of interaction

Ballistics ${ }^{a}$

[^3]
Rocketry

[^4]Gravitationally bound orbital motion ${ }^{a}$

Potential energy of interaction	$U(r)=-\frac{G M m}{r} \equiv-\frac{\alpha}{r}$	(3.99)	$\begin{array}{ll} \hline U(r) & \text { potential energy } \\ G & \text { constant of gravitation } \\ M & \text { central mass } \\ m & \text { orbiting mass }(\ll M) \\ \alpha & \text { positive constant } \end{array}$
Total energy	$E=-\frac{\alpha}{r}+\frac{J^{2}}{2 m r^{2}}=-\frac{\alpha}{2 a}$	(3.100)	E total energy (constant) J total angular momentum (constant)
Virial theorem ($1 / r$ potential)	$\begin{aligned} & E=\langle U\rangle / 2=-\langle T\rangle \\ & \langle U\rangle=-2\langle T\rangle \end{aligned}$	(3.101) (3.102)	$T \quad$ kinetic energy $\langle\cdot\rangle$ mean value
Orbital equation (Kepler's 1st law)	$\begin{aligned} & \frac{r_{0}}{r}=1+e \cos \phi, \quad \text { or } \\ & r=\frac{a\left(1-e^{2}\right)}{1+e \cos \phi} \end{aligned}$	$\begin{aligned} & (3.103) \\ & (3.104) \end{aligned}$	r_{0} semi-latus-rectum $r \quad$ distance of m from M $e \quad$ eccentricity
Rate of sweeping area (Kepler's 2nd law)	$\frac{\mathrm{d} A}{\mathrm{~d} t}=\frac{J}{2 m}=\text { constant }$	(3.105)	$A \quad$ area swept out by radius vector (total area $=\pi a b)$
Semi-major axis	$a=\frac{r_{0}}{1-e^{2}}=\frac{\alpha}{2\|E\|}$	(3.106)	$a \quad$ semi-major axis $b \quad$ semi-minor axis
Semi-minor axis	$b=\frac{r_{0}}{\left(1-e^{2}\right)^{1 / 2}}=\frac{J}{(2 m\|E\|)^{1 / 2}}$	(3.107)	
Eccentricity ${ }^{\text {b }}$	$e=\left(1+\frac{2 E J^{2}}{m \alpha^{2}}\right)^{1 / 2}=\left(1-\frac{b^{2}}{a^{2}}\right)^{1 / 2}$	(3.108)	
Semi-latusrectum	$r_{0}=\frac{J^{2}}{m \alpha}=\frac{b^{2}}{a}=a\left(1-e^{2}\right)$	(3.109)	
Pericentre	$r_{\text {min }}=\frac{r_{0}}{1+e}=a(1-e)$	(3.110)	$r_{\text {min }}$ pericentre distance
Apocentre	$r_{\text {max }}=\frac{r_{0}}{1-e}=a(1+e)$	(3.111)	$r_{\text {max }}$ apocentre distance
Phase	$\cos \phi=\frac{(J / r)-(m \alpha / J)}{\left(2 m E+m^{2} \alpha^{2} / J^{2}\right)^{1 / 2}}$	(3.112)	$\phi \quad$ orbital phase
Period (Kepler's 3rd law)	$P=\pi \alpha\left(\frac{m}{2\|E\|^{3}}\right)^{1 / 2}=2 \pi a^{3 / 2}\left(\frac{m}{\alpha}\right)^{1 / 2}$	(3.113)	$P \quad$ orbital period

${ }^{a}$ For an inverse-square law of attraction between two isolated bodies in the nonrelativistic limit. If m is not $\ll M$, all explicit references to m in Equations (3.100) to (3.113) should be replaced by the reduced mass, $\mu=M m /(M+m)$, and r taken as the body separation. The distance of mass m from the centre of mass is then $r \mu / m$ (see earlier table on Reduced mass). Other orbital dimensions scale similarly.
${ }^{b}$ Note that if the total energy, E, is <0 then $e<1$ and the orbit is an ellipse (a circle if $e=0$). If $E=0$, then $e=1$ and the orbit is a parabola. If $E>0$ then $e>1$ and the orbit becomes a hyperbola (see Rutherford scattering on next page).

Rutherford scattering ${ }^{a}$

[^5]Inelastic collisions ${ }^{a}$

	After collision		
$\begin{array}{ll} & v_{2}^{\prime}-v_{1}^{\prime}=\epsilon\left(v_{1}-v_{2}\right) \\ \text { Coefficient of } & \epsilon=1 \quad \text { if perfectly elastic } \\ \text { restitution } & \epsilon=0 \quad \text { if perfectly inelastic }\end{array}$	$\begin{aligned} & (3.125) \\ & (3.126) \\ & (3.127) \end{aligned}$		coefficient of restitution pre-collision velocities post-collision velocities
$\begin{aligned} & \text { Loss of kinetic } \\ & \text { energy }^{b}\end{aligned} \quad \frac{T-T^{\prime}}{T}=1-\epsilon^{2}{ }^{2}, ~$	(3.128)		total KE in zero momentum frame before and after collision
Final velocities $\begin{aligned} & v_{1}^{\prime}=\frac{m_{1}-\epsilon m_{2}}{m_{1}+m_{2}} v_{1}+\frac{(1+\epsilon) m_{2}}{m_{1}+m_{2}} v_{2} \\ & v_{2}^{\prime}=\frac{m_{2}-\epsilon m_{1}}{m_{1}+m_{2}} v_{2}+\frac{(1+\epsilon) m_{1}}{m_{1}+m_{2}} v_{1} \end{aligned}$	(3.129) (3.130)		particle masses

${ }^{a}$ Along the line of centres, $v_{1}, v_{2} \ll c$.
${ }^{b}$ In zero momentum frame.

Oblique elastic collisions ${ }^{a}$

Before collision			
Directions of motion	$\begin{aligned} & \tan \theta_{1}^{\prime}=\frac{m_{2} \sin 2 \theta}{m_{1}-m_{2} \cos 2 \theta} \\ & \theta_{2}^{\prime}=\theta \end{aligned}$	(3.131) (3.132)	$\left.\begin{array}{cl}\theta & \begin{array}{l}\text { angle between } \\ \text { centre line and }\end{array} \\ \text { incident velocity }\end{array}\right\}$
Relative separation angle	$\theta_{1}^{\prime}+\theta_{2}^{\prime} \begin{cases}>\pi / 2 & \text { if } m_{1}<m_{2} \\ =\pi / 2 & \text { if } m_{1}=m_{2} \\ <\pi / 2 & \text { if } m_{1}>m_{2}\end{cases}$	(3.133)	
Final velocities	$\begin{aligned} v_{1}^{\prime} & =\frac{\left(m_{1}^{2}+m_{2}^{2}-2 m_{1} m_{2} \cos 2 \theta\right)^{1 / 2}}{m_{1}+m_{2}} v \\ v_{2}^{\prime} & =\frac{2 m_{1} v}{m_{1}+m_{2}} \cos \theta \end{aligned}$	$\begin{aligned} & (3.134) \\ & (3.135) \end{aligned}$	$\begin{array}{cl} v & \begin{array}{l} \text { incident velocity } \\ \text { of } m_{1} \end{array} \\ v_{i}^{\prime} & \text { final velocities } \end{array}$

[^6]
3.5 Rigid body dynamics

Moment of inertia tensor

${ }^{{ }^{I}}{ }_{I i}$ are the moments of inertia of the body. $I_{i j}(i \neq j)$ are its products of inertia. The integrals are over the body volume.

Principal axes

Principal moment of inertia tensor	$\mathbf{I}^{\prime}=\left(\begin{array}{ccc}I_{1} & 0 & 0 \\ 0 & I_{2} & 0 \\ 0 & 0 & I_{3}\end{array}\right)$	(3.143)	\mathbf{I}^{\prime} principal moment of inertia tensor I_{i} principal moments of inertia
Angular momentum	$\boldsymbol{J}=\left(I_{1} \omega_{1}, I_{2} \omega_{2}, I_{3} \omega_{3}\right)$	(3.144)	\boldsymbol{J} angular momentum $\omega_{i} \quad$ components of ω along principal axes
Rotational kinetic energy	$T=\frac{1}{2}\left(I_{1} \omega_{1}^{2}+I_{2} \omega_{2}^{2}+I_{3} \omega_{3}^{2}\right)$	(3.145)	T kinetic energy
Moment of inertia ellipsoid a	$\begin{aligned} & T=T\left(\omega_{1}, \omega_{2}, \omega_{3}\right) \\ & J_{i}=\frac{\partial T}{\partial \omega_{i}} \quad(\boldsymbol{J} \text { is } \perp \text { ellipsoid surface }) \end{aligned}$	$\begin{aligned} & (3.146) \\ & (3.147) \end{aligned}$	$\uparrow I_{3}$
Perpendicular axis theorem	$I_{1}+I_{2} \begin{cases}\geq I_{3} & \text { generally } \\ =I_{3} & \text { flat lamina } \perp \text { to 3-axis }\end{cases}$	(3.148)	lamina
Symmetries	$I_{1} \neq I_{2} \neq I_{3} \quad$ asymmetric top $I_{1}=I_{2} \neq I_{3} \quad$ symmetric top $I_{1}=I_{2}=I_{3} \quad$ spherical top	(3.149)	

[^7]Moments of inertia ${ }^{a}$

Thin rod, length l	$I_{1}=I_{2}=\frac{m l^{2}}{12}$	(3.150)
	$I_{3} \simeq 0$	

${ }^{a}$ With respect to principal axes for bodies of mass m and uniform density. The radius of gyration is defined as $k=(I / m)^{1 / 2}$.
${ }^{b}$ Origin of axes is at the centre of mass ($h / 4$ above the base).
${ }^{c}$ Around an axis through the centre of mass and perpendicular to the plane of the plate.

Centres of mass

Solid hemisphere, radius r	$d=3 r / 8 \quad$ from sphere centre	(3.170)
Hemispherical shell, radius r	$d=r / 2 \quad$ from sphere centre	(3.171)
Sector of disk, radius r, angle 2θ	$d=\frac{2}{3} r \frac{\sin \theta}{\theta}$ from disk centre	(3.172)
Arc of circle, radius r, angle 2θ	$d=r \frac{\sin \theta}{\theta} \quad$ from circle centre	(3.173)
Arbitrary triangular lamina, height h^{a}	$d=h / 3$ perpendicular from base	(3.174)
Solid cone or pyramid, height h	$d=h / 4$ perpendicular from base	(3.175)
Spherical cap, height h, sphere radius r	solid: $\quad d=\frac{3}{4} \frac{(2 r-h)^{2}}{3 r-h} \quad$ from sphere centre shell: $d=r-h / 2$ from sphere centre	$\begin{aligned} & (3.176) \\ & (3.177) \end{aligned}$
Semi-elliptical lamina, height h	$d=\frac{4 h}{3 \pi} \quad$ from base	(3.178)

${ }^{a} h$ is the perpendicular distance between the base and apex of the triangle.

Pendulums

Simple pendulum	$\begin{equation*} P=2 \pi \sqrt{\frac{l}{g}}\left(1+\frac{\theta_{0}^{2}}{16}+\cdots\right) \tag{3.179} \end{equation*}$	```\(P\) period \(g\) gravitational acceleration \(l\) length \(\theta_{0}\) maximum angular displacement```	$\overline{l^{1} \theta_{0}}$
Conical pendulum	$P=2 \pi\left(\frac{l \cos \alpha}{g}\right)^{1 / 2}$	α cone half-angle	
Torsional pendulum ${ }^{a}$	$P=2 \pi\left(\frac{l I_{0}}{C}\right)^{1 / 2}$	I_{0} moment of inertia of bob C torsional rigidity of wire (see page 81)	15
Compound pendulum ${ }^{b}$	$\begin{align*} & P \simeq 2 \pi\left[\frac { 1 } { m g a } \left(m a^{2}+I_{1} \cos ^{2} \gamma_{1}\right.\right. \\ & \left.\left.+I_{2} \cos ^{2} \gamma_{2}+I_{3} \cos ^{2} \gamma_{3}\right)\right]^{1 / 2} \tag{3.182} \end{align*}$	a distance of rotation axis from centre of mass m mass of body I_{i} principal moments of inertia γ_{i} angles between rotation axis and principal axes	$I_{1} \sqrt[a]{\frac{1}{y} I_{3}}$
Equal double pendulum ${ }^{c}$	$P \simeq 2 \pi\left[\frac{l}{(2 \pm \sqrt{2}) g}\right]^{1 / 2}$		m

[^8]Tops and gyroscopes

${ }^{a}$ Components are with respect to the principal axes, rotating with the body.
${ }^{b}$ The body frequency is the angular velocity (with respect to principal axes) of ω around the 3 -axis. The space frequency is the angular velocity of the 3 -axis around \boldsymbol{J}, i.e., the angular velocity at which the body cone moves around the space cone.
${ }^{c} \boldsymbol{J}$ close to 3 -axis. If $\Omega_{\mathrm{b}}^{2}<0$, the body tumbles.

3.6 Oscillating systems

Free oscillations

Differential equation	$\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+2 \gamma \frac{\mathrm{~d} x}{\mathrm{~d} t}+\omega_{0}^{2} x=0$	(3.196)		oscillating variable time damping factor (per unit mass) undamped angular frequency
Underdamped solution $\left(\gamma<\omega_{0}\right)$	$x=A \mathrm{e}^{-\gamma t} \cos (\omega t+\phi)$ where $\omega=\left(\omega_{0}^{2}-\gamma^{2}\right)^{1 / 2}$	(3.197) (3.198)	A ϕ	amplitude constant phase constant angular eigenfrequency
Critically damped solution ($\gamma=\omega_{0}$)	$x=\mathrm{e}^{-\gamma t}\left(A_{1}+A_{2} t\right)$	(3.199)	A_{i}	amplitude constants
Overdamped solution $\left(\gamma>\omega_{0}\right)$	$\begin{aligned} & x=\mathrm{e}^{-\gamma t}\left(A_{1} \mathrm{e}^{q t}+A_{2} \mathrm{e}^{-q t}\right) \\ & \text { where } \quad q=\left(\gamma^{2}-\omega_{0}^{2}\right)^{1 / 2} \end{aligned}$	(3.200) (3.201)		
Logarithmic decrement ${ }^{a}$	$\Delta=\ln \frac{a_{n}}{a_{n+1}}=\frac{2 \pi \gamma}{\omega}$	(3.202)	Δ	logarithmic decrement nth displacement maximum
Quality factor	$Q=\frac{\omega_{0}}{2 \gamma} \quad\left[\simeq \frac{\pi}{\Delta} \quad\right.$ if $\left.\quad Q \gg 1\right]$	(3.203)	Q	quality factor

${ }^{a}$ The decrement is usually the ratio of successive displacement maxima but is sometimes taken as the ratio of successive displacement extrema, reducing Δ by a factor of 2 . Logarithms are sometimes taken to base 10 , introducing a further factor of $\log _{10} \mathrm{e}$.

Forced oscillations

Differential equation	$\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+2 \gamma \frac{\mathrm{~d} x}{\mathrm{~d} t}+\omega_{0}^{2} x=F_{0} \mathrm{e}^{\mathrm{i} \omega_{\mathrm{f}} t}$	(3.204)	x	oscillating variable time damping factor (per unit mass)
Steadystate solution ${ }^{a}$	$\begin{aligned} & x=A \mathrm{e}^{\mathbf{i}\left(\omega_{\mathrm{f}} t-\phi\right)}, \quad \text { where } \\ & A=F_{0}\left[\left(\omega_{0}^{2}-\omega_{\mathrm{f}}^{2}\right)^{2}+\left(2 \gamma \omega_{\mathrm{f}}\right)^{2}\right]^{-1 / 2} \\ & \\ & \simeq \frac{F_{0} /\left(2 \omega_{0}\right)}{\left[\left(\omega_{0}-\omega_{\mathrm{f}}\right)^{2}+\gamma^{2}\right]^{1 / 2}} \quad\left(\gamma \ll \omega_{\mathrm{f}}\right) \\ & \tan \phi=\frac{2 \gamma \omega_{\mathrm{f}}}{\omega_{0}^{2}-\omega_{\mathrm{f}}^{2}} \end{aligned}$	$\begin{aligned} & (3.205) \\ & (3.206) \\ & (3.207) \\ & (3.208) \end{aligned}$	F_{0} ω_{1} A ϕ	undamped angular frequency force amplitude (per unit mass) forcing angular frequency amplitude phase lag of response behind driving force
Amplitude resonance ${ }^{b}$	$\omega_{\mathrm{ar}}^{2}=\omega_{0}^{2}-2 \gamma^{2}$	(3.209)	ω^{2}	amplitude resonant forcing angular frequency
Velocity resonance ${ }^{c}$	$\omega_{\mathrm{vr}}=\omega_{0}$	(3.210)	ω	velocity resonant forcing angular frequency
Quality factor	$Q=\frac{\omega_{0}}{2 \gamma}$	(3.211)	Q	quality factor
Impedance	$Z=2 \gamma+\mathbf{i} \frac{\omega_{\mathrm{f}}^{2}-\omega_{0}^{2}}{\omega_{\mathrm{f}}}$	(3.212)	Z	impedance (per unit mass)

[^9]
[^0]: ${ }^{1}$ H. Goldstein, Classical Mechanics, 2nd ed., 1980, Addison-Wesley.

[^1]: ${ }^{a}$ For frames S and S^{\prime} coincident at $t=0$ in relative motion along x.

[^2]: ${ }^{a}$ The gravitational force on a mass m is $m g$.

[^3]: ${ }^{a}$ Ignoring the curvature and rotation of the Earth and frictional losses. g is assumed constant.

[^4]: ${ }^{a}$ From the surface of a spherically symmetric, nonrotating body, mass M.
 ${ }^{b}$ Transfer between coplanar, circular orbits a and b, via ellipse h with a minimal expenditure of energy.

[^5]: ${ }^{a}$ Nonrelativistic treatment for an inverse-square force law and a fixed scattering centre. Similar scattering results from either an attractive or repulsive force. See also Conic sections on page 38.
 ${ }^{b}$ The correct branch can be chosen by inspection.
 ${ }^{c}$ Also the focal points of the hyperbola.
 d_{n} is the number of particles per second passing through unit area perpendicular to the beam.

[^6]: ${ }^{a}$ Collision between two perfectly elastic spheres: m_{2} initially at rest, velocities $\ll c$.

[^7]: ${ }^{a}$ The ellipsoid is defined by the surface of constant T.

[^8]: ${ }^{a}$ Assuming the bob is supported parallel to a principal rotation axis.
 ${ }^{b}$ I.e., an arbitrary triaxial rigid body.
 ${ }^{c}$ For very small oscillations (two eigenmodes).

[^9]: ${ }^{a}$ Excluding the free oscillation terms.
 ${ }^{b}$ Forcing frequency for maximum displacement.
 ${ }^{c}$ Forcing frequency for maximum velocity. Note $\phi=\pi / 2$ at this frequency.

